If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x+104=0
a = 1; b = 32; c = +104;
Δ = b2-4ac
Δ = 322-4·1·104
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{38}}{2*1}=\frac{-32-4\sqrt{38}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{38}}{2*1}=\frac{-32+4\sqrt{38}}{2} $
| -6t-15=-5t | | m/18+107=111 | | 2x+0=26 | | 18-2n=6n+7-9n | | 2|x|-6=10 | | 4g+9=2(g-6)+29 | | -20h-20=-18h | | 8b=-7+8b | | 3(w-5)-8w=-30 | | 16t^2=2.17 | | 13+3z=7 | | 49+9=2(g-6)+2g | | x=x^2+10x-26 | | -11=9-2w | | 8/3x+1/3x=32/3+5/3 | | 10y-5y=25-5 | | f/7-27=4 | | 5/8(x+9)=30 | | 3r=13 | | 3.14=x12 | | 3x(x-6)=O | | 6(k+3)=2(-k+5) | | x/4=21/7 | | Y^2=11y-28 | | 6(k+3)=2(-k+5 | | 10-8x=-4x-6 | | 112=12+10x | | 16-2y=4y+4 | | -4x-(19)=-3 | | 8.5y+8=7+6y-4.5 | | -4x-(22)=22 | | -4x-(10)=14 |